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Key Points:

« Convert overlapping isosceles triangle slip rate functions to dynamic compatible
regularized Yoffe slip rate functions.

» Estimate dynamic parameters Dc, pus—pg with assumptions, using scaling rela-
tions from Tinti, Fukuyama, et al.| (2005)).

e Perform dynamic rupture modeling with obtained dynamic parameters and as-
sumed initial stress field.

1 Introduction

Kinematic and dynamic rupture modeling are the two main methods for fault rup-
ture modeling. Kinematic rupture model (KRM) is data-constrained, while dynamic rup-
ture model (DRM) is physics-based. KRM can be quickly computed using existing in-
version programs and is typically available soon after an earthquake Tinti et al.| (2009).
However, KRMs are often non-unique and depend on robust observational data cover-
age. On the other hand, DRMs based on laboratory experiments and elastodynamic equa-
tions, introduce friction and dynamic stress evolution interacting with seismic wave prop-
agation Ramos et al.| (2022)). By combining these two methods, we can select KRMs that
are physics-consistent from multiple solutions and develop DRMs which are data-informed.

Previous work shows dynamic parameters can be extracted from traction-slip curves
by solving elastodynamic equations from KRMs. (Tinti, Spudich, & Coccol (2005)) |Causse
et al.| (2014))). In this study, we directly extract dynamic parameters from a kinematic
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model of 2019 Mw 4.9 Le Teil earthquake (by Bertrand Delouis, 2023) using a scaling

relation from |Tinti, Fukuyama, et al.| (2005) without solving elastodynamic equations.

As the scaling relations contain parameters from specific regularized Yoffe slip rate func-

tions, we first convert the overlapping isosceles triangle slip rate functions used in kine-

matic modelling to dynamic consistent regularized Yoffe functions defined by [Tinti, Fukuyama,
. Then we compute critical slip distance Dc and breakdown stress drop oy

using the scaling relations. Finally, we perform a dynamic rupture modelling with the

code SeisSol (https://seissol.org/) using the obtained parameters with necessary assump-

tions about the initial stress field.

2 Kinematic Model

We use the latest kinematic model of the 2019 Mw 4.9 Le Teil earthquake. Inver-
sion details refer to Bertrand Delouis (2023).

2.1 Fault Geometry

This kinematic model is inverted on a planar fault consists of 60 subfaults. Each
subfault is 0.5 km long along strike and dip, covering an area of 0.25 km?2. There are 12
subfaults along the strike and 5 along the dip, resulting in a total fault length of 6 km
and a width of 2.5 km, dipping to the SE at 57 degrees and striking 47 degree to the north.
Figure |1| shows the fault geometry, the number in the center of each subfault indicates
the moment magnitude of the corresponding subfault. The seismic moment of the en-
tire fault is a partition of seismic moment come from all subfaults. The overall magni-
tude is Mw 4.95.

‘Subfault Moment Magnitude Map

o © ©
© w N S
Depth (km)
o
N

Moment Magnitude (Mw)
n
o

n»
N

»
[

- -02

. - -1
Easting (km) ’ S
3

»

Figure 1: Configuration of the kinematic model. The red star indicates the hypocenter
used in dynamic rupture simulations. The fault length is 6 km and fault width is 2.5 km,
dip angle is 57 degrees. The colorbar indicates moment magnitude of each subfault.
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3 Analysis
3.1 Convert Source Time Functions to Regularized Yoffe Functions

The source time function (STF) used in kinematic modeling consists of three over-
lapping isosceles triangular functions. Also known as the slip rate function, STF describes
how slip evolves over time. At each source point, the slip rate function is constructed
using the maximum amplitudes of the three triangular functions with a fixed duration
of 0.3 seconds.

We show an example of a constructed slip rate function of a subfault in Figure [2]
and its corresponding regularized Yoffe slip rate function in Figure [3] following the for-
mulation by Tinti et al. 2005, Tinti, Fukuyama, et al.| (2005). To construct the regular-
ized Yoffe function, only 3 parameters are required, namely Tacc, 7z and Dmax. Tacc
is the positive acceleration time, it defines the time when the slip rate reaches the max-
imum, Vpeqr. Tr is the total rupture duration; and Dmax is the final slip. All overlap-
ping isosceles triangular STFs have a duration of 0.6 seconds by definition (ref. Bertrand
Delouis).

STF: Slip = 14.6752 (cm) at Point Source 46(0.911,1.222,0.631) ‘Rz?ularixed Yoffe Function i by Tacc: 0.‘48485‘ tauR: 0.315‘5‘5 Slip: 14.6752cm
—
= = Slip Rate 1 (Amplitude = 82.5)
= = Slip Rate 3 (Amplitude = 0.7) 100
100 -
: 5 ® -
: E ol <
E 3 !
E 2 :
g i :
1
20 :
Tace !
7777777777 -
!
o o1 oz o3 o o5 o % YR os ot o5 o
Time (5) Time (s)
Figure 2: Constructed slip rate function Figure 3: Constructed regularized Yoffe
for point source N. 46 slip rate function for point source N. 46

Figure [f] and [5] show the slip evolution curve, which slip are computed by integrat-
ing the area under the slip rate functions. The duration for overlapping isoceles trian-
gle slip rate functions (OITFs) is 0.6s, and the duration for regularized Yoffe slip rate
funcitons (RYFSs) is 2:75+7x due to convolution, where 7, is Tacc divided by 1.27 [Tinti,
Fukuyama, et al.| (2005)Tinti et al. (2021)).

Then we vary the input parameter 7z for the RYFs to better fit the slip curve with
the one integrated from OITFs, we calculate the time when the slip reaches 90% of the
total slip from the slip evolution of the overlapping isosceles triangle functions (OITFs).
Figure [6] show the parameter 75 decreased from 0.6 s to less than 0.15 s for the point
source N. 46. Comparing Figure [7] (slip curve before varying 7r) to Figure [§] (slip curve
after varying 7g), we see that adjusting 7r significantly improves the slip evolution fit-
ting between converted Yoffe and original triangle slip rate function.
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Figure 6: Left: Constructed RYF for point source N. 46 with constant 7z Right: Con-
structed RYF for point source N. 46 with heterogeneous 7 (time when slip reaches 90%
of the final slip from the slip evolution curve obtained by OITFs)
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Figure 7: Comparison of slip evolution from the overlapping triangular STF and the con-
verted regularized Yoffe STF before varying 7p.
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Figure 8: Comparison of slip evolution from the overlapping triangular STF and the con-
verted regularized Yoffe STF after varying 7x.

3.2 Extract Dynamic Parameters using Scaling Relations

We first extract dynamic parameter, Dc, using the following scaling relation from
[Tinti, Spudich, & Coccol (2005])

TG.CC

TR

D, x

Dinaz (1)

we assume a linear scaling factor C1 and set C1 = 1. then Equation [I] becomes

Dc :Cl\/%Dmaz (2)
TR

where Dmax is the final slip, Tacc is the positive accerlation time and 75 is the rupture
duration. FigureEl shows the computed Dc distribution (interpolated) across the fault
plane.

. Next, we extract the breakdown stress drop using the following relation from
[Spudich, & Coccol (2005]).

Vpeak 0.8 C(VT)AO'I, (3)

Let us assume C(V;) = C2 - V;, then Equation [3| becomes

V;)eak: =C2- erAo-b (4)

where Vr is rupture velocity, and because

Aoy, = (s — pa) ()

and

on = p(z)gz (6)
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Dc Map, C1=1.0
T

Along Dip Distance (km)
5

Along Strike Distance (km)

Figure 9: Map of interpolated Dc when C1 = 1. The black line contours rupture onset
times, and the white line contours the magnitude of Dc

03 Therefore
V;Deak
g = — peat 7
Hs = Ha =597 Vep(2)gz @
0 where Vjeqr is one of the parameters for constructing RYFs, and rupture velocity

o5 can be computed from the rupture onset time using the method of [Pulido & Dalguer| (2009)),

96 Hok et al.| (2011)), Figure [10[ shows the computed rupture velocity distribution across the

o7 fault plane.

Along Dip Distance (km)
8
Rupture Velocity (km/s)

Along Strike Distance (km)

Figure 10: Map of interpolated rupture velocity computed from rupture onset times. the
black line contours rupture onset times, and the white line contours the magnitude of rup-
ture velocity.

08 We can tune the parameter C2 to scale the breakdown stress drop, we know from
% [Causse et al.| (2021) the stress drop of this event is around [1 — 2] MPa, therefore, we choose
100 C2 = 2.0e4, and obtained a reasonable breakdown stress drop across the fault plane, shown

101 in Figure @



Along Dip Distance (km)
Breakdown stress drop (MPa)

Along Strike Distance (km)

Figure 11: Map of interpolated breakdown stress drop when C2 is 2.0e4. The black line
contours rupture onset times, and the white line contours the magnitude of Aoy,

102 We can then obtain the dynamic parameter ps—puq by dividing the depth-dependent
103 confining stress. Figure [12| shows ps — ug. We use the rheological model from Causse
104 et al. (2021) [Causse et al| (2021)), detailed in Table 2}

g = g C2is 2.0e+04

Along Dip Distance (km)

] 2 -1 0 1 2 3
Along Strike Distance (km)

Figure 12: Map of interpolated ps — p1g when C2 is 2.0e4. The black line contours rupture
onset times, and the white line contours the magnitude of ps — pg

105 Furthermore, Figure [L3] shows the computed fracture energy across the fault plane,
106 which defined as:

1
EG=§'A01)'DC (8)

107 Having obtained the difference between ps and pg, we can compute pg explicitly
108 by assuming pg is constant.
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Figure 13: Map of interpolated fracture energy when C1 is 1 and C2 is 2.0e4. The black
line contours rupture onset times, and the white line contours the magnitude of fracture
energy

4 Dynamic Simulation
4.1 Assign Parameters using Slip-Weaking Friction

We use slip-weakening friction. With estimated D, and ps—pg from the scaling
relations, we further assume g = 0.2 for all subfaults, and obtain a heterogeneous dis-
tribution of ps. We also need to assume cohesion is zero for all subfaults.

Figure 14: Histogram for input parame- Figure 15: Histogram for input parame-
ter ws ter Dc

Figures [14] and [I5] show histograms of the input parameters us and D, while Fig-
ures [16] and [17] display the extract values used for each subfault. From the histogram,
we observe that most p, values fall below 0.3 and most D, values are below 2 cm. Upon
closer examination, these correspond to subfaults have small slip. A low p, indicates a
low initial stress level, which is unfavourable for dynamic rupture propagation.

In dynamic rupture modeling (DRM), nucleation is initiated at a single point, i.e.
hypocenter, unlike the multiple point sources in inverted kinematic rupture models (KRM),
where each point sources are forced to slip without considering dynamic stress evolution.
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Figure 16: Distribution of input param- Figure 17: Distribution of input param-
eter ug in each subfault eter Dc in each subfault

Therefore, adjustments to these subfaults with low ps are necessary to sustain the rup-
ture from the nucleation zone and guide the rupture propagates to more favorable sub-
faults near the surface.

4.2 Setup Initial Stress

Since SeisSol is built with the EAST library (Carsten Uphoff, 2018), we set up the
initial stress using a pre-compiled function called AndersonStress, which is based on
the Mohr-Coulomb failure criteria and Anderson’s theory of faulting. The input param-
eters for AndersonStress is listed in Table [Tl

Table 1: Stress Parameters in the easi function

Symbol Meaning

LLs static friction coefficients

hd dynamic friction coefficients

SH,pa: azimuth of the maximum horizontal compressive stress
Sy indicates which principal stress is vertical

c cohesion

v the stress shape ratio

S S-parameter

$1G,2 effective confining pressure

s is heterogeneous, we estimated ps from the scaling relations, the value is dis-
played in Figure 1g is homogeneous and assumed equal to 0.2. SHy,,x is homoge-
neous and we use a constant value of 0, this parameter is the same as the horizontal pro-
jection of the largest subhorizontal stress when the stress state is Aberdonian
(2019) Lund & Townend| (2007). S, is 3 for reverse faulting mechanisms. Cohesion
is set to 0 for simplicity. v describes the ratio between the three principal stresses, and
we use a constant valuer = 0.5. S is the ratio between stress excess (1, — 79) and dy-
namic stress drop (79 — 7) (1976)), Previous studies show S-parameter con-
trols the rupture potential on a fault |Andrews| (1976))Das & Aki| (1977)), positive and small
value promote rupture, large or negative value prevent rupture |Aochi & Tsudal (2023)),
recent studies also show S-parameter influences rupture style Gabriel et al.| (2012), there-
fore, we can modify this parameter to develop a desired rupture scenario via the initial
stress, but in the current setup, we assume S is constant and equal to 0.5. o, is depth-
dependent and is approximated as p-g-z. The rheological model used for calculating
the effective confining stress is summarized in Table 2]
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The function outputs a rank-2 stress tensor at each mesh grid point. Rank-2 ten-
sors are typically represented as matrices. The corresponding stress matrix is symmet-
ric and is parameterized by 6 components.

bacr bacy bacz
byy byz
bZZ

By rotating the stress tensor, we can find the three principal stresses (s1 > so >
s3), where the shear stress is zero.

S1
52
53

Conversely, we can compute the 6 stress tensor components from the principal stresses.
We prefer using principal stresses because they are directly related to the Mohr-Coulomb
circle.

Anderson’s theory of faulting assumes that one of the principal stresses is vertical.
For reverse faulting focal mechanisms, Ss is vertical, and S; is the maximum horizon-
tal stress, perpendicular to Ss, as shown in Figure

We demonstrate below how principal stresses are calculated theorectially using the
input parameters listed in Table [1| based on the Mohr-Coulomb failure theory.

Mohr-Coulomb Failure Envelope and Mohr's Circle
30—
—Peak stress
— Initial stress
— Residual stress
- - 8§=1.2182

Ts = €+ UsSy

5 =12182.

Shear Stress 7 (MPa)

\ 2¢dip

I 2¢Dptf)( ! Il

o 5 1053 15 P 25 30 51 35 40
Normal Stress o (MPa)

Figure 18: Left: Cross-section of the fault, showing the reverse faulting mechanism,
where ¢dP is the dip angle. Right: Mohr-Coulomb circle illustrating the initial stress state
for all possible orientations. The intersection of the green line with the circle represents
the initial stress state on an optimally oriented fault, while the intersection of the dashed
green line with the circle corresponds to the stress state on a fault with a dip angle of 57°.
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In Figure ¢°P! is the optimal angle, us is the static friction coefficient, P is the
locus of the optimally oriented Mohr’s circle, and ds is the radius of the optimally ori-
ented Mohr’s circle. The difference between the maximum and minimum principal stresses
is twice ds:

opt _ T _ 1
@ 13 arctan(ps) 9)
1
ds = (81 — S3) (10)
1
P = (81 +55) (11)
v is the ratio between 3 principal stresses, v = 2%:23, therefore,
S1=P+ds
So=P—ds+2-v-ds (12)
53 =P —ds
The effective confining stress is,
S1+ 5+ S 2-v—1)-ds
T %@p-g-z (13)
We find initial stress state for optimal angle ¢°P! as:
To.0pt = ds - 8in(2 - $°P") (14)
U?wpt =P —ds-cos(2- ¢°P") (15)

In Figure blue line is peak stress and black line is residual stress, c is cohesion,
g is dynamic friction coefficient,

Tp,opt = C + s Jg,opt (16)
Tr,opt = Hd * J?L,opt (17)

Relative fault strength R is the ratio of the static stress drop (79—7;) to the break-
down stress drop (7, — 7,-) (T in Aochi & Ulrich, 2015 |Aochi & Ulrich| (2015))).

R _ 1 _ T0,0pt — Tr,opt (18)
opt — -
1 + Sopt Tp,opt — Tr,opt

From Equation and

dS _ Ropt-CJrD'eff-A

T sin(2¢°Pt)+cos(2¢°Pt)- A+a-A
A= Ropt - (s — pa) + pa (19)
a = 2-1/371

Similarly, we find initial stress state for dip angle ¢%P as:

—11—
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To.dip = ds - sin(2 - 9P

09 gip = P — ds - cos(2 - )

Tp,dip = C + ps - ag,dip (20)
o 0

Tr,dip = Hd * Un,dip

__ To,dip —Tr,dip

1
1+Sqip Tp,dip—Tr,dip

Rdip =

Le Teil rheological model (Causse et al., 2021)

depth [km] 0.0 063 1.2 142 203 219 5096
p [kg/m®] 2407 2688 2165 2465 2470 2667 2685
V, [m/s] 2047 3645 1200 2291 2314 3457 3616

Table 2

Higher p results in greater absolute initial normal and shear stresses (larger cir-
cle) when the S parameter is fixed. Figure [19| (a) shows how the optimally oriented an-
gle ¢ varies with changes in ps. We observe that p, is highly sensitive to ¢; a small change
in ¢ can lead to a significant change in us. This sensitivity is challenging because we lack
precise information about ¢ i.e. the dip angle from the kinematic inversion, which is a
not well-constrained parameter Delouis et al| (2021)). For example, Aochi and Tsuda’s
simulation used a dip angle of 50 degrees |Aochi & Tsudal (2023)), resulting in a much higher
stress level and a more favorable S parameter compared to the 57 degrees used in this
setup. Figure (19| (b) illustrates that a higher p results in a much larger Mohr’s circle
and therefore higher absolute stress.

6= arctan(.)

o 01 02 03 04 05 06 07 08 09 1

= /4 - 112 - arctan(s)

(a) (b)

Figure 19: (a) ¢ and 6 as a function of us (b) Mohr’s circle for different pus

4.2.1 Initial Stress

The computed initial stress field for each subfault is shown in Figures 23] and
We display only the initial shear stress in the dip direction since SHp,ax is assumed to

—12—
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be 0, resulting in negligible shear stress in the strike direction. To sustain dynamic rup-
ture, we increase absolute initial stress by adding 0.2 in ps to the subfaults in the up-
per central part using a test-and-trial approach.

Figure 20: TdO Figure 21: Pn0

4.3 Nucleation

We adopted the weak nucleation method following [Tinti et al| (2021)). This method
is considered superior to the overstressing method, which often results in artificially large
fault slip in the hypocentral area and creates unrealistic strong pulses in synthetic seis-
mograms, as noted in [Palgunadi et al.| (2020)). The weak nucleation method gradually
reduces the yield strength within an elliptical area centered at the hypocenter. This area
expands over time at a decreasing rate, as described in [Harris et al| (2018). This approach
ensures a smooth transition to fully spontaneous dynamic rupture propagation. In our
models, the forced nucleation phase lasts less than 1.67 seconds with minimal moment
release, using a nucleation initial forcing speed of 300 m/s and a nucleation radius of 0.5
km.

4.4 Dynamic Rupture Results

Figures [23]| and [24] show the assumed initial shear stress, which is the same as in
the previous section, except for a manual reduction in fault strength us of subfault No.
43 (see Figure . Figure [25| presents the dynamic rupture results for setup 13, includ-
ing shear stress drop in the dip direction (T_d), absolute shear stress along dip (TdO0),
slip rate in dip direction (m/s), and absolute slip (m), from top to bottom panels at each
simulation time. The shear stress drop is negative within the rupture front, except for
the subfault where we reduced ps. This subfault has lower stress levels, slowing rupture
propagation. After the rupture gains sufficient energy from subfaults on the right side,
between 7 to 8 seconds, it continues to the left side.

Figure [26] (a) shows the source time function of the dynamic rupture model. The
blue line shows the target kinematic model source time function, the time of two mod-
els shown are shifted for better visual comparison. Figure [26] (b) shows the Fourier spec-
tra of the corresponding source time functions, both models start to decay at around 1
Hz, the dynamic rupture model has higher amplitude but similar decaying slope com-
pare to the kinematic model.

,13,
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Modified Subfault model with hetergenous N with fa:m:rmus =1.0, lm:lorbase =0.0, 4= 0.2
o
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Figure 22: Modified u, distribution, setup 13

A5 07

Time: 0.00

Figure 23: TdO setupl3 Figure 24: Pn0 setupl3
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Time: 4.50

Figure 25: Rupture dynamics for setupl3 from 0 to 10 s, T_d is shear stress drop (Pa) in
dip direction, TdO0 is the absolute shear stress (Pa) along dip, SRD is the slip rate (m/s)
in dip direction, and ASI is absolute slip (m),
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Figure 26: Source time function and its spectra of dynamic rupture model and target
kinematic rupture model with notations
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4.5 Application

This model demonstrates that dynamic rupture history can be guided by assign-
ing specific dynamic parameters to each subfault.

We can also justify the modifications, For example, the decrease of us could be ex-
plained by fluid from heavy rainfall penetrating 1km depth and weakening the surround-
ing rocks.

This method demonstrates the ability to control and modify dynamic rupture evo-
lution through assigned dynamic parameters, In the next, we need to test more setups
and develop a model that is compatible with the kinematic model in terms of moment
magnitude, final slip distribution, rupture history, rupture velocity, and stress drop. How-
ever, we should point out that we might not be able to satisfy all criteria in a single dy-
namic rupture model, but we can hope for finding conditions that is necessary for achiev-
ing each criterion.
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